microRNAs as A Biomarker to Predict Embryo Quality Assessment in In Vitro Fertilization

Document Type : Review Article

Authors

1 Universitas IndonesiaMaster Program of Biology, Department of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Depok, Indonesia

2 Human Reproduction, Infertility and Family Planning Research Center, Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia Jakarta, Jakarta, Indonesia

3 Division of Reproductive Endocrinology and Infertility Department of Obstetrics and Gynecology, Faculty of Medicine Universitas Indonesia, DKI Jakarta, Indonesia

4 Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia

5 Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia

Abstract

Embryo selection for in vitro fertilization (IVF) is an effort to increase the success rate of embryo implantation. Factors influencing the success of embryo implantation include embryo quality, endometrial receptivity, embryo characteristics, and maternal interactions. Some molecules have been found to influence these factors, but their regulatory mechanisms are unclear. MicroRNAs (miRNAs) are reported to play an essential role in the embryo implantation process. miRNAs are small non-coding RNAs consisting of only 20 nucleotides that play an essential role in the stability of gene expression regulation. Previous studies have reported that miRNAs have many roles and are released by cells into the extracellular environment for intracellular communication. In addition, miRNAs can provide information related to physiological and pathological conditions. These findings encourage research development in determining the quality of embryos in IVF to increase the implantation success rate. Moreover, miRNAs can provide an overview of embryo-maternal communication and potentially be noninvasive biological markers of embryo quality, which could increase assessment accuracy while reducing mechanical damage to the embryo itself. This review article summarizes the involvement of extracellular miRNAs and the potential applications of miRNAs in IVF.

Keywords

Main Subjects


  1. Lee AM, Connell MT, Csokmay JM, Styer AK. Elective single embryo transfer- the power of one. Contracept Reprod Med. 2016; 1: 11.
  2. Jones HW. IVF: Past and future. RBM Online. 2003; 6(3): 375-381.
  3. Borges E Jr, Setti AS, Braga DP, Geraldo MV, Figueira RC, Iaconelli A Jr. miR-142-3p as a biomarker of blastocyst implan­tation failure - a pilot study. JBRA Assist Reprod. 2016; 20(4): 200-205.
  4. Gardner DK, Weissman A, Holes CM, Shoham Z. Textbook of assisted reproductive technologies: laboratory and clinical per­spective. 3rd ed. London: Informa Health Care; 2009.
  5. Gardner D. Textbook of assisted reproductive technologies: laboratory and clinical perspective. New York: Informa Health Care; 2007.
  6. Braude P, Pickering S, Flinter F, Ogilvie CM. Preimplantation genetic diagnosis. Nat Rev Genet. 2002; 3(12): 941-953.
  7. Leaver M, Wells D. Non-invasive preimplantation genetic test­ing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020; 26(1): 16-42.
  8. Russell SJ, Menezes K, Balakier H, Librach C. Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR meth­ods. Syst Biol Reprod Med. 2020; 66(2): 129-139.
  9. Cimadomo D, Capalbo A, Ubaldi FM, Scarica C, Palagiano A, Canipari R, et al. The Impact of biopsy on human embryo de­velopmental potential during preimplantation genetic diagno­sis. Biomed Res Int. 2016; 2016: 7193075.
  10. Stigliani S, Anserini P, Venturini PL, Scaruffi P. Exogen markers of human embryo quality in culture medium. Curr Trends Clin Embryol. 2015; 2(6): 209-221.
  11. Sundari AM, Iffanolida PA, Mutia K, Muna N, Mansyur E, Hest­iantoro A, et al. Carrier RNA (cRNA) enhances dsDNA recovery extracted from small volume spent embryo culture medium. Int J Adv Sci Eng Inf Technol. 2021; 11(3): 1203-1208.
  12. Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associ­ated with human embryo fragmentation. Hum Reprod. 2013; 28(10): 2652-2660.
  13. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018; 33(4): 745-756.
  14. Noren Hooten N, Fitzpatrick M, Wood WH 3rd, De S, Ejiogu N, Zhang Y, et al. Age-related changes in microRNA levels in serum. Aging (Albany NY). 2013; 5(10): 725-740.
  15. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: ap­proaches and considerations. Nat Rev Genet. 2012; 13(5): 358-369.
  16. Rosenbluth EM, Shelton DN, Sparks AE, Devor E, Christenson L, Van Voorhis BJ. MicroRNA expression in the human blasto­cyst. Fertil Steril. 2013; 99(3): 855-861. e3.
  17. Siristatidis C, Vogiatzi P, Brachnis N, Liassidou A, Iliodromiti Z, Bettocchi S, et al. Review: microRNAs in assisted reproduction and their potential role in IVF failure. In Vivo. 2015; 29(2): 169-175.
  18. Santulli G. microRNA: medical evidence from molecular biolo­gy to clinical practice. NY: Columbia University Medical Center; 2015; 353-387.
  19. Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo de­velopment. Biology (Basel). 2017;6(3): 34.
  20. Kuznyetsov V, Madjunkova S, Abramov R, Antes R, Ibarrien­tos Z, Motamedi G, et al. Minimally invasive cell-free human embryo aneuploidy testing (miPGT-A) utilizing combined spent embryo culture medium and blastocoel fluid –towards develop­ment of a clinical assay. Sci Rep. 2020; 10(1): 7244.
  21. Hardarson T, Van Landuyt L, Jones G. The blastocyst. Hum Reprod. 2012; 27 Suppl 1: i72-91.
  22. Chen HF, Chen SU, Ma GC, Hsieh ST, Tsai HD, Yang YS, et al. Preimplantation genetic diagnosis and screening: Current sta­tus and future challenges. J Formos Med Assoc. 2018; 117(2): 94-100.
  23. Handyside AH, Kontogianni EH, Hardy K, Winston RM. Preg­nancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990; 344(6268): 768-770.
  24. McArthur SJ, Leigh D, Marshall JT, de Boer KA, Jansen RP. Pregnancies and live births after trophectoderm biopsy and preimplantation genetic testing of human blastocysts. Fertil Steril. 2005; 84(6): 1628-1636.
  25. Brouillet S, Martinez G, Coutton C, Hamamah S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic re­view. Reprod Biomed Online. 2020; 40(6): 779-796.
  26. Milachich T. New advances of preimplantation and prenatal genetic screening and noninvasive testing as a potential pre­dictor of health status of babies. Biomed Res Int. 2014; 2014: 306505.
  27. Rødgaard T, Heegaard PM, Callesen H. Non-invasive assess­ment of in-vitro embryo quality to improve transfer success. Reprod Biomed Online. 2015; 31(5): 585-592.
  28. Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013; 23(4): 604-615.
  29. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, of­ten flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1): 15-20.
  30. Kuokkanen S, Chen B, Ojalvo L, Benard L, Santoro N, Pollard JW. Genomic profiling of microRNAs and messenger RNAs re­veals hormonal regulation in microRNA expression in human endometrium. Biol Reprod. 2010; 82(4): 791-801.
  31. Li SC, Chan WC, Hu LY, Lai CH, Hsu CN, Lin WC. Identification of homologous microRNAs in 56 animal genomes. Genomics. 2010; 96(1): 1-9.
  32. Hull ML, Nisenblat V. Tissue and circulating microRNA influ­ence reproductive function in endometrial disease. Reprod Bi­omed Online. 2013; 27(5): 515-529.
  33. Hyde D. Introduction to genetic pronciples. New York: The McGraw-Hill Company, Inc.; 2009; 870.
  34. Liang J, Wang S, Wang Z. Role of microRNAs in embryo im­plantation. Reprod Biol Endocrinol. 2017; 15(1): 90.
  35. Desvignes T, Batzel P, Berezikov E, Eilbeck D, Eppig JT, McAn­drews MS, et al. miRNA nomenclature: a view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trend Genet. 2015; 31(11): 613-626.
  36. Galliano D, Pellicer A. MicroRNA and implantation. Fertil Steril. 2014; 101(6): 1531-1544.
  37. Kaczmarek MM, Najmula J, Guzewska MM, Przygrodzka E. MiRNAs in the peri-implantation period: Contribution to embryo-maternal communication in pigs. Int J Mol Sci. 2020; 21(6): 1-16.
  38. Carletti MZ, Christenson LK. MicroRNA in the ovary and female reproductive tract. J Anim Sci. 2009; 87 Suppl 14: E29-E38.
  39. Ambros V. The functions of animal microRNAs. Nature. 2004; 431(7006): 350-355.
  40. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Po­gosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008; 105(30): 10513-10518.
  41. Kozomara A, Griffiths-Jones S. miRBase: integrating microR­NA annotation and deep-sequencing data. Nucleic Acids Res. 2011; 39 Database issue: D152-D157.
  42. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006; 34 Database issue: D140-D144.
  43. Novia D, Putri Lubis H, Halim B, Pustimbara A, Lestari R, Abinawanto A, et al. The impact of late follicular progester­one level on in vitro fertilization-intracytoplasmic sperm injec­tion outcome: Case-control study. Int J Reprod Biomed. 2020; 18(5): 367-374.
  44. Hanifah N, Wiweko B, Bowolaksono A. FSHR and LHR mRNA expression in granulosa cells of poor responder. J Phys Conf Ser. 2021; 1725(1): 1-4.
  45. Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, et al. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc. 2019; 94(2): 415-438.
  46. Yang Q, Lin J, Liu M, Li R, Tian B, Zhang X, et al. Highly sensi­tive sequencing reveals dynamic modifications and activities of small RNAs in mouse oocytes and early embryos. Sci Adv. 2016; 2(6): e1501482.
  47. Xu YW, Wang B, Ding CH, Li T, Gu F, Zhou C. Differentially ex­pressed micoRNAs in human oocytes. J Assist Reprod Genet. 2011; 28(6): 559-566.
  48. Karakaya C, Guzeloglu-Kayisli O, Uyar A, Kallen AN, Babayev E, Bozkurt N, et al. Poor ovarian response in women under­going in vitro fertilization is associated with altered microRNA expression in cumulus cells. Fertil Steril. 2015; 103(6): 1469-1476. e1-3.
  49. Lee SH, Chen TY, Dhar SS, Gu B, Chen K, Kim YZ, et al. A feedback loop comprising PRMT7 and miR-24-2 interplays with Oct4, Nanog, Klf4 and c-Myc to regulate stemness. Nu­cleic Acids Res. 2016; 44(22): 10603-10618.
  50. Baxter Bendus AE, Mayer JF, Shipley SK, Catherino WH. Inter­observer and intraobserver variation in day 3 embryo grading. Fertil Steril. 2006; 86(6): 1608-1615.
  51. Paul ABM, Sadek ST, Mahesan AM. The role of microRNAs in human embryo implantation: a review. J Assist Reprod Genet. 2019; 36(2): 179-187.
  52. Rosenbluth EM, Shelton DN, Wells LM, Sparks AE, Van Voorhis BJ. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation. Fertil Steril. 2014; 101(5): 1493-1500.
  53. Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Far­comeni A, et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril. 2016; 105(1): 225-235. e1-3.
  54. Kropp J, Salih SM, Khatib H. Expression of microRNAs in bo­vine and human pre-implantation embryo culture media. Front Genet. 2014; 5: 91.
  55. Cuman C, Van Sinderen M, Gantier MP, Rainczuk K, Sorby K, Rombauts L, et al. Human blastocyst secreted microRNA regu­late endometrial epithelial cell adhesion. EBioMedicine. 2015; 2(10): 1528-1535.
  56. Azzahra TB, Febri RR, Iffanolida PA, Mutia K, Wiweko B. The Correlation of chronological age and micro ribonucleic acid-135b expression in spent culture media of in vitro fertilisation patient. J Hum Reprod Sci. 2022; 15(1): 78-81.
  57. Riyanti A, Febri RR, Zakirah SC, Harzif AK, Rajuddin R, Mu­haram R, et al. Suppressing HOXA-10 gene expression by MicroRNA 135b during the window of implantation in infertile women. J Reprod Infertil. 2020; 21(3): 217-221.
  58. Muharam R, Rahmala Febri R, Mutia K, Ameilia Iffanolida P, Maidarti M, Wiweko B, et al. Down-regulation of miR-93 nega­tively correlates with overexpression of VEGFA and MMP3 in endometriosis: a cross-sectional study. Int J Fertil Steril. 2023; 17(1): 28-33.
  59. Battaglia R, Vento ME, Ragusa M, Barbagallo D, La Ferlita A, Di Emidio G, et al. MicroRNAs are stored in human MII oocyte and their expression profile changes in reproductive aging. Biol Reprod. 2016; 95(6): 131.
  60. Dominguez F, Moreno-Moya JM, Lozoya T, Romero A, Martínez S, Monterde M, et al. Embryonic miRNA profiles of normal and ectopic pregnancies. PLoS One. 2014; 9(7): e102185.