Function of MicroRNAs in Normal and Abnormal Ovarian Activities: A Review Focus on MicroRNA-21

Document Type : Review Article


1 Coenzyme R Research Institute, Tehran, Iran

2 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran

3 Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran

4 Department of Anatomy, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran



Some failures in ovary function, like folliculogenesis and oogenesis, can give rise to various infertility-associated problems, including polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). PCOS influences 8 to 20% of women; while POI occurs in at least 1% of all women. Regrettably, the current therapies for these diseases
have not sufficiently been effective, and finding a suitable strategy is still a puzzle. One of the helpful strategies for managing and treating these disorders is understanding the contributing pathogenesis and mechanisms. Recently, it has been declared that abnormal expression of microRNAs (miRNAs), as a subset of non-coding RNAs, is involved in the
pathogenesis of reproductive diseases. Among the miRNAs, the roles of miRNA-21 in the pathogenesis of PCOS and POI have been highlighted in some documents; hence, the purpose of this mini-review was to summarize the evidence in conjunction with the functions of this miRNA and other effective microRNAs in the normal or abnormal functions of the ovary (i.e., PCOS and POI) with a mechanistic insight.


Main Subjects


    1. Ali A, Paramanya A, Poojari P, Arslan-Acaroz D, Acaroz U, Kostić AŽ. The utilization of bee products as a holistic approach to manag­ing polycystic ovarian syndrome-related infertility. Nutrients. 2023; 15(5): 1165.
    2. Zafardoust S, Kazemnejad S, Darzi M, Fathi-Kazerooni M, Saffa­rian Z, Khalili N, et al. Intraovarian administration of autologous menstrual blood derived-mesenchymal stromal cells in women with premature ovarian failure. Arch Med Res. 2023; 54(2): 135-144.
    3. Dring JC, Forma A, Chilimoniuk Z, Dobosz M, Teresiński G, Busze­wicz G, et al. Essentiality of trace elements in pregnancy, fertility, and gynecologic cancers-A state-of-the-art review. Nutrients. 2021; 14(1): 185.
    4. Emanuel RHK, Roberts J, Docherty PD, Lunt H, Campbell RE, Möller K. A review of the hormones involved in the endocrine dys­functions of polycystic ovary syndrome and their interactions. Front Endocrinol (Lausanne). 2022; 13: 1017468.
    5. Tefagh G, Payab M, Qorbani M, Sharifi F, Sharifi Y, Ebrahimne­gad Shirvani MS, et al. Effect of vitamin E supplementation on cardiometabolic risk factors, inflammatory and oxidative markers and hormonal functions in PCOS (polycystic ovary syndrome): a systematic review and meta-analysis. Sci Rep. 2022; 12(1): 5770.
    6. Azziz R. Controversy in clinical endocrinology: diagnosis of poly­cystic ovarian syndrome: the Rotterdam criteria are premature. J Clin Endocrinol Metab. 2006; 91(3): 781-785.
    7. Fu YX, Ji J, Shan F, Li J, Hu R. Human mesenchymal stem cell treatment of premature ovarian failure: new challenges and oppor­tunities. Stem Cell Res Ther. 2021; 12(1): 161.
    8. Ebrahimi M, Akbari Asbagh F. Pathogenesis and causes of prema­ture ovarian failure: an update. Int J Fertil Steril. 2011; 5(2): 54-65.
    9. Xu JY, Fan YH, Geng JZ, Gao N, Yu FH, Xia T. Application pro­gress of acupuncture in treatment of ovarian hypofunction. TMR Non-Drug Therapy. 2021; 4(3): 16-28.
    10. Pouryousefi-Koodehi T, Shayegan S, Hashemi S, Arefnezhad R, Roghani-Shahraki H, Motedayyen H, et al. Can mesenchymal stem cells derived from adipose tissue and their conditioned medi­um improve ovarian functions? A mini-review. Zygote. 2022; 30(5): 589-592.
    11. Taghizabet N, Rezaei-Tazangi F, Mousavi M, Dehghani F, Zareifard N, Shabani S, et al. Endometrial cell-derived conditioned medium in combination with platelet-rich plasma promotes the development of mouse ovarian follicles. Zygote. 2023; 31(1): 1-7.
    12. Ebrahimi N, Manavi MS, Nazari A, Momayezi A, Faghihkho­rasani F, Abdulwahid AH, et al. Nano-scale delivery systems for siRNA delivery in cancer therapy: New era of gene therapy empowered by nanotechnology. Environmental Research. 2023; 4(11): 36-48.
    13. Carletti MZ, Christenson LK. MicroRNA in the ovary and female reproductive tract. J Anim Sci. 2009; 87 Suppl 14: E29-E38.
    14. Acunzo M, Romano G, Wernicke D, Croce CM. MicroRNA and cancer--a brief overview. Adv Biol Regul. 2015; 57: 1-9.
    15. Çakmak HA, Demir M. MicroRNA and cardiovascular diseases. Balkan Med J. 2020; 37(2): 60-71.
    16. Shafi G, Aliya N, Munshi A. MicroRNA signatures in neurological disorders. Can J Neurol Sci. 2010; 37(2): 177-185.
    17. Ergin K, Çetinkaya R. Regulation of microRNAs. Methods Mol Biol. 2022; 2257: 1-32.
    18. Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell. 2013; 153(3): 516-519.
    19. Yan G, Zhang L, Fang T, Zhang Q, Wu S, Jiang Y, et al. MicroR­NA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett. 2012; 586(19): 3263-3270.
    20. He T, Sun Y, Zhang Y, Zhao S, Zheng Y, Hao G, et al. MicroRNA- 200b and microRNA-200c are up-regulated in PCOS granulosa cell and inhibit KGN cell proliferation via targeting PTEN. Reprod Biol Endocrinol. 2019; 17(1): 68.
    21. Yu Y, Li G, He X, Lin Y, Chen Z, Lin X, et al. MicroRNA-21 reg­ulate the cell apoptosis and cell proliferation of polycystic ovary syndrome (PCOS) granulosa cells through target toll like receptor TLR8. Bioengineered. 2021; 12(1): 5789-5796.
    22. Aldakheel FM, Abuderman AA, Alduraywish SA, Xiao Y, Guo WW. MicroRNA-21 inhibits ovarian granulosa cell proliferation by target­ing SNHG7 in premature ovarian failure with polycystic ovary syn­drome. J Reprod Immunol. 2021; 146: 103328.
    23. Mahmoud EH, Fawzy A, A Elshimy RA. Serum microRNA-21 nega­tively relates to expression of programmed cell death-4 in patients with epithelial ovarian cancer. Asian Pac J Cancer Prev. 2018; 19(1): 33-38.
    24. Pan B, Li J. MicroRNA-21 up-regulates metalloprotease by down-regulating TIMP3 during cumulus cell-oocyte complex in vitro mat­uration. Mol Cell Endocrinol. 2018; 477: 29-38.
    25. Báez-Vega PM, Echevarría Vargas IM, Valiyeva F, Encarnación- Rosado J, Roman A, Flores J, et al. Targeting miR-21-3p inhib­its proliferation and invasion of ovarian cancer cells. Oncotarget. 2016; 7(24): 36321-36337.
    26. Hilker RE, Pan B, Zhan X, Li J. MicroRNA-21 enhances estradiol production by inhibiting WT1 expression in granulosa cells. J Mol Endocrinol. 2021; 68(1): 11-22.
    27. Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, Salehi M. Micro­RNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev Biol. 2021; 480: 69-77.
    28. Yang CX, Du ZQ, Wright EC, Rothschild MF, Prather RS, Ross JW. Small RNA profile of the cumulus-oocyte complex and early embryos in the pig. Biol Reprod. 2012; 87(5): 117.
    29. Bartolucci AF, Uliasz T, Peluso JJ. MicroRNA-21 as a regulator of human cumulus cell viability and its potential influence on the devel­opmental potential of the oocyte. Biol Reprod. 2020; 103(1): 94-103.
    30. Wright EC, Hale BJ, Yang CX, Njoka JG, Ross JW. MicroRNA-21 and PDCD4 expression during in vitro oocyte maturation in pigs. Reprod Biol Endocrinol. 2016; 14: 21.
    31. Han X, Xue R, Yuan HJ, Wang TY, Lin J, Zhang J, et al. Micro­RNA-21 plays a pivotal role in the oocyte-secreted factor-induced suppression of cumulus cell apoptosis. Biol Reprod. 2017; 96(6): 1167-1180.
    32. Carletti MZ, Fiedler SD, Christenson LK. MicroRNA 21 blocks ap­optosis in mouse periovulatory granulosa cells. Biol Reprod. 2010; 83(2): 286-295.
    33. McClusky LM, Barnhoorn IE, van Dyk JC, Bornman MS. Testicu­lar apoptosis in feral Clarias gariepinus using TUNEL and cleaved caspase-3 immunohistochemistry. Ecotoxicol Environ Saf. 2008; 71(1): 41-46.
    34. Romorini L, Garate X, Neiman G, Luzzani C, Furmento VA, Guber­man AS, et al. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival. Sci Rep. 2016; 6: 35660.
    35. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006; 69(3): 562- 573.
    36. Brown HM, Dunning KR, Robker RL, Boerboom D, Pritchard M, Lane M, et al. ADAMTS1 cleavage of versican mediates essential structural remodeling of the ovarian follicle and cumulus-oocyte matrix during ovulation in mice. Biol Reprod. 2010; 83(4): 549-557.
    37. Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res. 2005; 15(7): 483-494.
    38. Timoneda O, Balcells I, Córdoba S, Castelló A, Sánchez A. De­termination of reference microRNAs for relative quantification in porcine tissues. PLoS One. 2012; 7(9): e44413.
    39. McBride D, Carré W, Sontakke SD, Hogg CO, Law A, Donadeu FX, et al. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction. 2012; 144(2): 221- 233.
    40. Zhang T, He M, Zhang J, Tong Y, Chen T, Wang C, et al. Mecha­nisms of primordial follicle activation and new pregnancy opportu­nity for premature ovarian failure patients. Front Physiol. 2023; 14: 1113684.
    41. Tian S, Zhang H, Chang HM, Klausen C, Huang HF, Jin M, et al. Activin A promotes hyaluronan production and upregulates ver­sican expression in human granulosa cells†. Biol Reprod. 2022; 107(2): 458-473.
    42. Ji J, Zhou Y, Li Z, Zhuang J, Ze Y, Hong F. Impairment of ovarian follicular development caused by titanium dioxide nanoparticles exposure involved in the TGF-β/BMP/Smad pathway. Environ Toxi­col. 2023; 38(1): 185-192.
    43. Yao G, Yin M, Lian J, Tian H, Liu L, Li X, et al. MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Mol Endocrinol. 2010; 24(3): 540-551.
    44. Andreas E, Hoelker M, Neuhoff C, Tholen E, Schellander K, Tes­faye D, et al. MicroRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res. 2016; 366(1): 219-230.
    45. Gebremedhn S, Salilew-Wondim D, Hoelker M, Rings F, Neuhoff C, Tholen E, et al. MicroRNA-183-96-182 cluster regulates bovine granulosa cell proliferation and cell cycle transition by coordinately targeting FOXO1. Biol Reprod. 2016; 94(6): 127.
    46. Zhou S, Zhao A, Wu Y, Bao T, Mi Y, Zhang C. Protective effect of follicle-stimulating hormone on dna damage of chicken follicular granulosa cells by inhibiting CHK2/p53. Cells. 2022; 11(8): 1291.
    47. Tao H, Yang J, Xu M, Liu Z, Liu Y, Xiong Q. MicroRNA-27a-3p tar­geting Vangl1 and Vangl2 inhibits cell proliferation in mouse granu­losa cells. Biochim Biophys Acta Gene Regul Mech. 2023; 1866(1): 194885.
    48. Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by target­ing Sma-and Mad-related protein 4. Biol Reprod. 2014; 91(6): 146.
    49. Portela VM, Dirandeh E, Guerrero-Netro HM, Zamberlam G, Bar­reta MH, Goetten AF, et al. The role of fibroblast growth factor-18 in follicular atresia in cattle. Biol Reprod. 2015; 92(1): 14.
    50. Li Y, Fang Y, Liu Y, Yang X. MicroRNAs in ovarian function and disorders. J Ovarian Res. 2015; 8: 51.
    51. Taghizabet N, Bahmanpour S, Fard NZ, Rezaei-Tazangi F, Has­sanpour A, Nejad EK, et al. In vitro growth of the ovarian follicle: taking stock of advances in research. JBRA Assist Reprod. 2022; 26(3): 508-521.
    52. Sirotkin AV, Ovcharenko D, Grossmann R, Lauková M, Mlyncek M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol. 2009; 219(2): 415-420.
    53. Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR- 378) regulates ovarian estradiol production by targeting aromatase. Endocrinology. 2011; 152(10): 3941-3951.
    54. Hasuwa H, Ueda J, Ikawa M, Okabe M. miR-200b and miR-429 function in mouse ovulation and are essential for female fertility. Science. 2013; 341(6141): 71-73.
    55. Tian M, Zhang X, Ye P, Tao Q, Zhang L, Ding Y, et al. MicroRNA-21 and microRNA-214 play important role in reproduction regulation during porcine estrous. Anim Sci J. 2018; 89(10): 1398-1405.
    56. Coyle C, Campbell RE. Pathological pulses in PCOS. Mol Cell En­docrinol. 2019; 498: 110561.
    57. Naji M, Aleyasin A, Nekoonam S, Arefian E, Mahdian R, Amidi F. Differential expression of mir-93 and mir-21 in granulosa cells and follicular fluid of polycystic ovary syndrome associating with differ­ent phenotypes. Sci Rep. 2017; 7(1): 14671.
    58. Sørensen AE, Wissing ML, Salö S, Englund AL, Dalgaard LT. Mi­croRNAs related to polycystic ovary syndrome (PCOS). Genes (Basel). 2014; 5(3): 684-708.
    59. Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol. 2018; 59: 391-412.
    60. Wang JP, Bowen GN, Padden C, Cerny A, Finberg RW, Newburger PE, et al. Toll-like receptor-mediated activation of neutrophils by influenza A virus. Blood. 2008; 112(5): 2028-2034.
    61. Oréal E, Mazaud S, Picard JY, Magre S, Carré-Eusèbe D. Differ­ent patterns of anti-Müllerian hormone expression, as related to DMRT1, SF-1, WT1, GATA-4, Wnt-4, and Lhx9 expression, in the chick differentiating gonads. Dev Dyn. 2002; 225(3): 221-232.
    62. Bakhshalizadeh S, Amidi F, Alleyassin A, Soleimani M, Shirazi R, Shabani Nashtaei M. Modulation of steroidogenesis by vitamin D3 in granulosa cells of the mouse model of polycystic ovarian syn­drome. Syst Biol Reprod Med. 2017; 63(3): 150-161.
    63. Aldakheel FM, Abuderman AA, Alduraywish SA, Xiao Y, Guo WW. MicroRNA-21 inhibits ovarian granulosa cell proliferation by target­ing SNHG7 in premature ovarian failure with polycystic ovary syn­drome. J Reprod Immunol. 2021; 146: 103328.
    64. Ren J, Yang Y, Xue J, Xi Z, Hu L, Pan SJ, et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Commun. 2018; 496(2): 712-718.
    65. Li X, Xie J, Wang Q, Cai H, Xie C, Fu X. miR-21 and pellino-1 ex­pression profiling in autoimmune premature ovarian insufficiency. J Immunol Res. 2020; 2020: 3582648.
    66. Fu X, He Y, Wang X, Peng D, Chen X, Li X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Ther. 2017; 8(1): 187.
    67. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identi­fication of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013; 98(7): 3068-3079.
    68. De Nardo Maffazioli G, Baracat EC, Soares JM, Carvalho KC, Ma­ciel GAR. Evaluation of circulating microRNA profiles in Brazilian women with polycystic ovary syndrome: a preliminary study. PLoS One. 2022; 17(10): e0275031.
    69. Chen B, Xu P, Wang J, Zhang C. The role of MiRNA in polycystic ovary syndrome (PCOS). Gene. 2019; 706: 91-96
    70. Xu B, Zhang YW, Tong XH, Liu YS. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microR­NAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015; 404: 26-36.
    71. Shi L, Liu S, Zhao W, Shi J. miR-483-5p and miR-486-5p are down-regulated in cumulus cells of metaphase II oocytes from women with polycystic ovary syndrome. Reprod Biomed Online. 2015; 31(4): 565-572.
    72. Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L. miR-483 is down-regulated in polycystic ovarian syndrome and inhibits KGN cell pro­liferation via targeting insulin-like growth factor 1 (IGF1). Med Sci Monit. 2016; 22: 3383-3393.
    73. Dang Y, Zhao S, Qin Y, Han T, Li W, Chen ZJ. MicroRNA-22-3p is down-regulated in the plasma of Han Chinese patients with prema­ture ovarian failure. Fertil Steril. 2015; 103(3): 802-807. e1.
    74. Kuang H, Han D, Xie J, Yan Y, Li J, Ge P. Profiling of differentially expressed microRNAs in premature ovarian failure in an animal model. Gynecol Endocrinol. 2014; 30(1): 57-61.
    75. Yang X, Zhou Y, Peng S, Wu L, Lin HY, Wang S, et al. Differentially expressed plasma microRNAs in premature ovarian failure pa­tients and the potential regulatory function of mir-23a in granulosa cell apoptosis. Reproduction. 2012; 144(2): 235-244.
    76. Rezq S, Huffman AM, Syed M, Basnet J, do Carmo JM, Moak SP, et al. MicroRNA-21 modulates white adipose tissue browning and altered thermogenesis in a mouse model of polycystic ovary syn­drome. J Endocr Soc. 2021; 5 Suppl 1: A775-A776.
    77. Huffman AM, Rezq S, Basnet J, Yanes Cardozo LL, Romero DG. MicroRNA-21 genetic ablation exacerbates insulin signaling dys­regulation in hyperandrogenemic female mice. FASEB J. 2022; 36(S1).
    78. Li X, Xie J, Wang Q, Cai H, Xie C, Fu X. miR-21 and pellino-1 ex­pression profiling in autoimmune premature ovarian insufficiency. J Immunol Res. 2020; 2020: 3582648.