Forskolin Improves Male Reproductive Complications Caused by Hyperglycemia in Type 2 Diabetic Rats

Document Type : Original Article


1 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

2 Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

3 Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

4 Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran


Background: In many diabetic patients, spermatogenesis complications are frequent causing infertility problems.
This study aimed to demonstrate the effect of Forskolin on male reproductive dysfunction caused by type 2 diabetes.
Materials and Methods: In this experimental study, type 2 diabetes was induced by a high-fat diet (HFD) for one
month and then a low single dose injection (35 mg/kg) of streptozotocin (STZ) in Wistar rats. After 72 hours, rats with
more than 200 mg/dl of blood glucose were considered type 2 diabetic rats. Forty rats (200-250 g) were divided into
four groups (n=10) including group 1 (G1): rats with normal diet and buffer citrate (STZ solvent) injection, group 2
(G2): control type 2 diabetic rats with HFD and STZ injection, group 3 (G3): type 2 diabetic rats received phosphate
buffer saline (PBS) as Forskolin solvent, and group 4 (G4): Forskolin treated diabetic rats (10 mg/kg) for 1 month.
Results: In comparison to control group, in diabetic groups (G2 and G3) some parameters are increased significantly:
The blood glucose (P=0.00078), testicular malondialdehyde (MDA) level and body weight (P=0.00009) and Bax
gene expression (P=0.00007). Unlike, some parameters are decreased significantly: The serum level of testosterone
(P=0.0009), testicular superoxide dismutase (SOD, P=0.00007) and glutathione peroxidase (GPX) levels (P=0.00008),
sperm concentration (P=0.00008), motility (P=0.00009), normal morphological sperm (P=0.00008) and Bcl-2 gene
expression (P=0.00009). However, in Forskolin treated group (G4) the parameters stayed close to control values that
was significantly (P=0.00007) higher than in G2 and G3 groups. Therefore, treatment with Forskolin significantly
improved these abnormal changes in Forskolin-treated group.
Conclusion: Our study demonstrates that Forskolin is an effective antidiabetic agent, which significantly improves
sperm concentration, testosterone levels, and antioxidant activity in diabetic rats.



    1. Yu D, Zheng W, Cai H, Xiang YB, Li H, Gao YT, et al. Long-term diet quality and risk of type 2 diabetes among urban Chinese adults. Diabetes Care. 2018; 41(4): 723-730.
    2. Ogurtsova K, da Rocha Fernandes J, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017; 128: 40-50.
    3. Kautzky-Willer A, Harreiter J, Pacini GJEr. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016; 37(3): 278-316.
    4. Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update. 2018; 24(1): 86-105.
    5. Halim M, Halim A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab Syndr. 2019; 13(2): 1165-1172.
    6. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016; 28(1-2): 1-10.
    7. Cakilcioglu U, Turkoglu I. An ethnobotanical survey of medicinal plants in Sivrice (Elazığ-Turkey). J Ethnopharmacol. 2010; 132(1): 165-175.
    8. Srivastava S, Misra A, Mishra P, Shukla P, Kumar M, Sundaresan V, et al. Molecular and chemotypic variability of forskolin in coleus forskohlii Briq., a high value industrial crop collected from western himalayas (India). RSC Adv. 2017; 7(15): 8843-8851.
    9. Venkatachalapathi A, Thenmozhi K, Karthika K, Ali MA, Paulsamy S, AlHemaid F, et al. Evaluation of a labdane diterpene forskolin isolated from Solena amplexicaulis (Lam.) Gandhi (Cucurbitaceae) revealed promising antidiabetic and antihyperlipidemic pharmacological properties. Saudi J Biol Sci. 2019; 26(7): 1710-1715.
    10. Wagh VD, Patil PN, Surana SJ, Wagh KV. Forskolin: upcoming antiglaucoma molecule. J Postgrad Med. 2012; 58(3): 199-202.
    11. Ríos-Silva M, Trujillo X, Trujillo-Hernández B, Sánchez-Pastor E, Urzúa Z, Mancilla E, et al. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes. Int J Med Sci. 2014; 11(5): 448-452.
    12. Rao DS, Rao VP, Rao KR. Pharmacological effects of forskolin isolated from coleus aromaticus on the lung damage rats. Int J Adv Pharm Sci. 2010; 1(1): 17-21.
    13. Girish BP, Reddy PS. Forskolin ameliorates mancozeb‐induced testicular and epididymal toxicity in Wistar rats by reducing oxidative toxicity and by stimulating steroidogenesis. J Biochem Mol Toxicol. 2018; 32(2): e22026.
    14. Skovsø S. Modeling type 2 diabetes in rats using high fat diet and streptozotocin. J Diabetes Investig. 2014; 5(4): 349-358.
    15. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, et al. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism. 2000; 49(11): 1390-1394.
    16. Lenzen S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia. 2008; 51(2): 216-226.
    17. Farashah MS, Pasbakhsh P, Omidi A, Nekoonam S, Aryanpour R, Kashani IR. Preconditioning with SDF-1 improves therapeutic outcomes of bone marrow-derived mesenchymal stromal cells in a mouse model of STZ-induced diabetes. Avicenna J Med Biotechnol. 2019; 11(1): 35-42.
    18. Shokoohi M, Gholami Farashah M, Khaki A, Khaki AA, Ouladsahebmadarek E, Aref Nezhad R. Protective effect of fumaria parviflora extract on oxidative stress and testis tissue damage in diabetic rats. Crescent J Med Biol Sci. 2019; 6(3): 355-360.
    19. Wellington D, Mikaelian I, Singer L. Comparison of ketamine– xylazine and ketamine–dexmedetomidine anesthesia and intraperitoneal tolerance in rats. J Am Assoc Lab Anim Sci. 2013; 52(4): 481-487.
    20. Ahangarpour A, Oroojan AA, Radan M. Effect of aqueous and hydro-alcoholic extracts of lettuce (Lactuca sativa) seed on testosterone level and spermatogenesis in NMRI mice. Iran J Reprod Med. 2014; 12(1): 65-72.
    21. Bahmanzadeh M, Goodarzi MT, Rezaei Farimani A, Fathi N, Alizadeh Z. Resveratrol supplementation improves DNA integrity and sperm parameters in streptozotocin–nicotinamide‐induced type 2 diabetic rats. Andrologia. 2019; 51(8): e13313.
    22. Salimnejad R, Sazegar G, Mousavi SM, Borujeni MJ, Shokoohi M, Allami M, et al. Effect of Teucriumpolium on oxidative damages and sperm parameters in diabetic rat induced with streptozotocin. Int J Adv Biotechnol Res. 2017; 8(3): 1909-1917.
    23. Nair V, Turner GA. The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde. Lipids. 1984; 19(10): 804-805.
    24. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247(10): 3170-3175.
    25. Ozbal S, Ergur BU, Erbil G, Tekmen I, Bagrıyanık A, Cavdar Z. The effects of α-lipoic acid against testicular ischemia-reperfusion injury in rats. ScientificWorldJournal. 2012; 2012: 489248.
    26. Shokoohi M, Shoorei H, Soltani M, Abtahi‐Eivari SH, Salimnejad R, Moghimian M. Protective effects of the hydroalcoholic extract of Fumaria parviflora on testicular injury induced by torsion/detorsion in adult rats. Andrologia. 2018; 50(7): e13047.
    27. Shoorei H, Khaki A, Khaki AA, Hemmati AA, Moghimian M, Shokoohi M. The ameliorative effect of carvacrol on oxidative stress and germ cell apoptosis in testicular tissue of adult diabetic rats. Biomed Pharmacother. 2019; 111: 568-578.
    28. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9): e45.
    29. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab. 2011; 96(6): 1654-1663.
    30. Singh L, Rana S, Mehan S. Protective effect of forskolin on diabetes induced nephrophaty via antioxidant activity. Iran J Pharmacol Ther. 2019; 17(1): 1-8.
    31. Omolaoye T, Du Plessis SS. Diabetes mellitus and male infertility. Asian Pac J Reprod. 2018; 7(1): 6-14.
    32. Schoeller EL, Schon S, Moley KH. The effects of type 1 diabetes on the hypothalamic, pituitary and testes axis. Cell Tissue Res. 2012; 349(3): 839-847.
    33. Al Hayek AA, Robert AA, Alshammari G, Hakami H, Al Dawish MA. Assessment of hypogonadism in men with type 2 diabetes: a cross-sectional study from Saudi Arabia. Clin Med Insights Endocrinol Diabetes. 2017; 10: 1179551417710209.
    34. Ahangarpour A, Oroojan AA, Heidari H, Ghaedi E, Taherkhani R. Effects of hydro-alcoholic extract from arctium lappa l.(burdock) root on gonadotropins, testosterone, and sperm count and viability in male mice with nicotinamide/streptozotocin-induced type 2 diabetes. Malays J Med Sci. 2015; 22(2): 25-32.
    35. Salvestrini V, Sell C, Lorenzini A. Obesity may accelerate the aging process. Front Endocrinol (Lausanne). 2019; 10: 266.
    36. Long L, Qiu H, Cai B, Chen N, Lu X, Zheng S, et al. Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway. Oncotarget. 2018; 9(4): 5321-5336.
    37. La Vignera S, Condorelli R, Vicari E, D'Agata R, Calogero AE. Diabetes mellitus and sperm parameters. J Androl. 2012; 33(2): 145-153.
    38. Li D, Ueta E, Kimura T, Yamamoto T, Osaki T. Reactive oxygen species (ROS) control the expression of Bcl‐2 family proteins by regulating their phosphorylation and ubiquitination. Cancer Sci. 2004; 95(8): 644-650.
    39. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005; 95(4): 503-507.