New Approaches to Define The Functional Competency of Human Sperm Subpopulations and Its Relationship to Semen Quality

Document Type : Original Article


Department of Medical Bioscience, Faculty of Natural Science, University of the Western Cape, Bellville, South Africa


Background: This study aimed at comparing a comprehensive set of functional and structural sperm characteristics between sperm motility fractions and correlating results to the standard semen parameters. By grouping related variables, our objective was to establish the predictive power of semen parameters and whether they accurately reflect the functionality of sperm motility fractions or merely a small set of parameters within individual fractions.
Materials and Methods: In this non-invasive experimental study, donor semen samples (n=55) were separated via
double density gradient centrifugation, isolating a high (HM) and low motile (LM) sperm fraction. Fractions were evaluated for percentage vitality, chromatin integrity, mature spermatozoa, motility and kinematic parameters, hyperactivation, positive reactive oxygen species, intact mitochondrial membrane potential (MMP) and acrosome reaction.
Results: HM fractions had significantly (P<0.001) enhanced percentages of induced acrosome reaction (HM, 55.6 ±
14.3%, LM, 25.0 ± 16.5%), motility and kinematic parameters, hyperactivation, vitality (HM, 70.4 ± 9.7%, LM, 47.9
± 10.3%), mitochondrial membrane intactness (HM, 67.2 ± 10.4%, LM, 44.7 ± 15.0%) and mature spermatozoa (HM,
83.4 ± 10.0%, LM, 64.6 ± 8.2%) with intact chromatin (HM, 80.5 ± 8.1%, LM, 71.3 ± 8.0%). Various sperm morphology abnormalities correlated with LM fractions’ grouped motility parameters (range, 0.46 to 0.51; range -0.4 to
-0.75), whereas combined semen traits of total motility, progressive motility, viscosity and mucus penetration (MPT) correlated with HM fractions’ grouped motility parameters (range, 0.44 to 0.84).
Conclusion: Collectively, total and progressive motility, viscosity and MPT may represent a reliable grouping of semen parameters for predicting the quality of HM sperm fractions. Separating the same donor semen samples into two significantly diverse motility sperm fractions could be a potential model in mimicking the qualities of fertile and sub-fertile males’ sperm populations and used for future research on the improvement of sperm subpopulations from males with different fertility statuses.


  1. Santolaria P, Soler C, Recreo P, Carretero T, Bono A, Berné JM, et al. Morphometric and kinematic sperm subpopulations in split ejaculates of normozoospermic men. Asian J Androl. 2016; 18(6): 831.
  2. Ibanescu I, Siuda M, Bollwein H. Motile sperm subpopulations in bull semen using different clustering approaches-associations with flow cytometric sperm characteristics and fertility. Anim Reprod Sci. 2020; 215: 106329.
  3. Nagata M, Endo K, Ogata K, Yamanaka K, Egashira J, Katafuchi N, et al. Live births from artificial insemination of microfluidic-sorted bovine spermatozoa characterized by trajectories correlated with fertility. PNAS. 2018; 115(14): E3087-E3096.
  4. Muratori M, Tarozzi N, Carpentiero F, Danti S, Perrone FM, Cambi M, et al. Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Sci Rep. 2019; 9(1): 7492.
  5. Oehninger S, Ombelet W. Limits of current male fertility testing. Fertil Steril. 2019; 111(5): 835-841.
  6. Evans HC, Dinh T, Hardcastle ML, Gilmore AA, Ugur MR, Hitit M, et al. Advancing semen evaluation using lipidomics. Front Vet Sci. 2021; 8: 601794.
  7. Vaughan DA, Sakkas D. Sperm selection methods in the 21st century. Biol Reprod. 2019; 101(6): 1076-1082.
  8. Takeshima T, Yumura Y, Kuroda S, Kawahara T, Uemura H, Iwasaki A. Effect of density gradient centrifugation on reactive oxygen species in human semen. Syst Biol Reprod Med. 2017; 63(3): 192-198.
  9. Morrell J. Colloids: applications in sperm preparation for assisted reproduction. In: Rahman MM, Asiri AM, editors. Advances in colloid science. London: IntechOpen; 2016.
  10. Capra E, Turri F, Lazzari B, Cremonesi P, Gliozzi TM, Fojadelli I, et al. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between high-and low-motile sperm populations. BMC Genomics. 2017; 18(1): 14.
  11. Punab M, Poolamets O, Paju P, Vihljajev V, Pomm K, Ladva R, et al. Causes of male infertility: a 9-year prospective monocentre study on 1737 patients with reduced total sperm counts. Hum Reprod. 2017; 32(1): 18-31.
  12. Talwar P, Hayatnagarkar S. Sperm function test. J Hum Reprod Sci. 2015; 8(2): 61-69.
  13. Khatun A, Rahman MS, Pang MG. Clinical assessment of the male fertility. Obstet Gynecol Sci. 2018; 61(2): 179-191.
  14. Holt WV, Van Look KJ. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction. 2004; 127(5): 527-535.
  15. Varum S, Bento C, Sousa APM, Gomes-Santos CS, Henriques P, Almeida-Santos T, et al. Characterization of human sperm populations using conventional parameters, surface ubiquitination, and apoptotic markers. Fertil Steril. 2007; 87(3): 572-583.
  16. World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: WHO Press; 2010.
  17. Christie B. Doctors revise declaration of Helsinki. BMJ. 2000; 321(7266): 913.
  18. Mortimer D. Practical Laboratory Andrology. New York: Oxford University Press on Demand, 1994.
  19. Rijnders S, Bolscher JG, McDonnell J, Vermeiden JP. Filling time of a lamellar capillary-filling semen analysis chamber is a rapid, precise, and accurate method to assess viscosity of seminal plasma. J Androl. 2007; 28(4): 461-465.
  20. Microptic automatic diagnostic systems. Protocols. Barcelona: Microptic; 2020. Available from: protocols/ (31 Jan 2021).
  21. Mortimer D, Mortimer ST. Computer-aided sperm analysis (CASA) of sperm motility and hyperactivation. In: Carrell D, Aston K, editors. Spermatogenesis. Methods in molecular biology (methods and protocols). Totowa, NJ: Humana Press; 2013: 927: 77-87.
  22. Ntanjana N. Hyperactivation in human semen and sperm subpopulations by selected calcium modulators. Presented for the M.Sc., Belville, Cape Town: University of the Western Cape; 2015.
  23. Boshoff NH, Lambrechts H, Maree L, Cloete SWP, Van der Horst G. A novel flush technique to simulate natural dispersal of spermatozoa in the female reproductive tract and expedite motility assessment of fresh ejaculated Merino (Ovis aries) sperm. S Afr J Anim Sci. 2018; 48(3): 469-476.
  24. Erenpreisa J, Erenpreiss J, Freivalds T, Slaidina M, Krampe R, Butikova J, et al. Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry. 2003; 52(1): 19-27.
  25. Erenpreiss J, Jepson K, Giwercman A, Tsarev I, Erenpreisa J, Spano M. Toluidine blue cytometry test for sperm DNA conformation: comparison with the flow cytometric sperm chromatin structure and TUNEL assays. Hum Reprod. 2004; 19(10): 2277-2282.
  26. ESHRE special interest group of embryology, alpha scientists in reproductive medicine. The vienna consensus: report of an expert meeting on the development of art laboratory performance indicators. Reprod Biomed Online. 2017; 35(5): 494-510.
  27. Gallon F, Marchetti C, Jouy N, Marchetti P. The functionality of mitochondria differentiates human spermatozoa with high and low fertilizing capability. Fertil Steril. 2006; 86(5): 1526-1530.
  28. Barbagallo F, La Vignera S, Cannarella R, Aversa A, Calogero AE, Condorelli RA. Evaluation of sperm mitochondrial function: a key organelle for sperm motility. J Clin Med. 2020; 9(2): 363.
  29. D’Amours O, Frenette G, Bourassa S, Calvo E, Blondin P, Sullivan R. Proteomic markers of functional sperm population in bovines: Comparison of low-and high-density spermatozoa following cryopreservation. J Proteome Res. 2018; 17(1): 177-188.
  30. Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019; 12(1): 4-18.
  31. Kothari S, Thompson A, Agarwal A, du Plessis SS. Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol. 2010; 48(5): 425-435.
  32. Caballero-Campo P, Lira-Albarrán S, Barrera D, Borja-Cacho E, Godoy- Morales HS, Rangel-Escareño C, et al. Gene transcription profiling of astheno-and normo-zoospermic sperm subpopulations. Asian J Androl. 2020; 22(6): 608-615.
  33. Parte PP, Rao P, Redij S, Lobo V, D'Souza SJ, Gajbhiye R, et al. Sperm phosphoproteome profiling by ultra performanceultra-performance liquid chromatography followed by data independent analysis (LC-MSE) reveals altered proteomic signatures in asthenozoospermia. J Proteomics. 2012; 75(18): 5861-5871.
  34. Mortimer ST, van der Horst G, Mortimer D. The future of computeraided sperm analysis. Asian J Androl. 2015; 17(4): 545-553.
  35. Yoon YE, Kim TY, Shin TE, Lee E, Choi KH, Lee SR, et al. Validation of SwimCount™, a novel home-based device that detects progressively motile spermatozoa: correlation with world health organization 5th semen analysis. World J Men's Health. 2020; 38(2): 191-197.
  36. Wang Y, Sun Y, Zhao X, Yuan R, Jiang H, Pu X. Downregulation of DJ-1 fails to protect mitochondrial complex I subunit NDUFS3 in the testes and contributes to the asthenozoospermia. Mediators Inflamm. 2018; 2018: 6136075.
  37. Larsen L, Scheike T, Jensen TK, Bonde JP, Ernst E, Hjollund NH, et al. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. Hum Reprod. 2000; 15(7): 1562-1567.
  38. Flint M, du Plessis SS, Menkveld R. Revisiting the assessment of semen viscosity and its relationship to leucocytospermia. Andrologia. 2014; 46(8): 837-841.
  39. Agarwal A, Sharma RK, Nelson DR. New semen quality scores developed by principal component analysis of semen characteristics. J Androl. 2003; 24(3): 343-352.
  40. Thilagavathi J, Venkatesh S, Kumar R, Dada R. Segregation of sperm subpopulations in normozoospermic infertile men. Syst Biol Reprod Med. 2012; 58(6): 313-318.