Reporting The Effects of Exposure to Monosodium Glutamate on The Regulatory Peptides of The Hypothalamic-Pituitary-Gonadal Axis

Document Type : Review Article

Authors

1 Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

2 Department of Food Sciences, Faculty of Agriculture, Damascus University, Damascus, Syria

Abstract

Monosodium glutamate (MSG) is a flavour enhancer that is used as a food additive (E621) in many parts of the world, especially in East Asian countries. However, in recent studies, it has been used as a neurotoxin because MSG is reported to cause neural degeneration in the hypothalamic arcuate of neonatal animals. The results of several studies show the negative effects of MSG injections on different parts of the hypothalamic-pituitary-gonadal (HPG) axis, in addition to its ability to inhibit secretion many reproductive neuropeptides, neurotrophic factors, and hormones, all of which play vital roles in the regulation of reproductive function. Oral administration or injection of large quantities of MSG into newborn animals results in a decrease in or overabundance of the production of many regulatory peptides of the male and female reproductive systems. In this review, we summarize the results of the most important studies that have examined the effect of oral consumption or injection of MSG on regulatory peptides of the HPG axis.

Keywords


  1. Niaz K, Zaplatic E, Spoor J. Extensive use of monosodium gluta­mate: a threat to public health? EXCLI J. 2018; 17: 273-278.
  2. Kazmi Z, Fatima I, Perveen Sh, Malik SS. Monosodium gluta­mate: review on clinical reports. Int J Food Prop. 2017; 20 Suppl 2: S1807-S1815.
  3. Roberts A, Lynch B, Rietjens IMCM. Risk assessment paradigm for glutamate. Ann Nutr Metab. 2018; 73 Suppl 5: 53-64.
  4. Zanfirescu A, Ungurianu A, Tsatsakis AM, Nitulescu GM, Koure­tas D, Veskoukis A, et al. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf. 2019; 18(4): 1111-1134.
  5. Henry-Unaeze HN. Update on food safety of monosodium l-gluta­mate (MSG). Pathophysiology. 2017; 24(4): 243-249.
  6. Nnadozie JO, Chijioke UO, Okafor OC, Olusina DB, Oli AN, Nwonu PC, et al. Chronic toxicity of low dose monosodium glutamate in albino Wistar rats. BMC Res Notes. 2019; 12(1): 593.
  7. Obayashi Y, Nagamura Y. Does monosodium glutamate really cause headache?: a systematic review of human studies. J Head­ache Pain. 2016; 17: 54.
  8. Roman-Ramos R, Almanza-Perez JC, Garcia-Macedo R, Blancas-Flores G, Fortis-Barrera A, Jasso EI, et al. Monosodium glutamate neonatal intoxication associated with obesity in adult stage is char­acterized by chronic inflammation and increased mRNA expression of peroxisome proliferator-activated receptors in mice. Basic Clin Pharmacol Toxicol. 2011; 108(6): 406-413.
  9. Ortiz GG, Bitzer-Quintero OK, Zarate CB, Rodriguez-Reynoso S, Larios-Arceo F, Velazquez-Brizuela IE, et al. Monosodium gluta­ mate-induced damage in liver and kidney: a morphological and biochemical approach. Biomed Pharmacother. 2006; 60(2): 86-91.
  10. Hernandez Bautista RJ, Mahmoud AM, Konigsberg M, Lopez Diaz Guerrero NE. Obesity: pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharma­cother. 2019; 111: 503-516.
  11. Elefteriou F, Takeda S, Liu X, Armstrong D, Karsenty G. Monoso­dium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass. Endocrinology. 2003; 144(9): 3842-3847.
  12. Hamza RZ, Al-Baqami NM. Testicular protective effects of ellagic acid on monosodium glutamate-induced testicular structural altera­tions in male rats. Ultrastruct Pathol. 2019; 43(4-5): 170-183.
  13. Yu T, Zhao Y, Shi W, Ma R, Yu L. Effects of maternal oral adminis­tration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain. Brain Res. 1997; 747(2): 195-206.
  14. Sarhan NR. The Ameliorating effect of sodium selenite on the histological changes and expression of caspase-3 in the testis of monosodium glutamate-treated rats: light and electron microscopic study. J Microsc Ultrastruct. 2018; 6(2): 105-115.
  15. Mondal M, Sarkar K, Nath PP, Paul G. Monosodium glutamate sup­presses the female reproductive function by impairing the functions of ovary and uterus in rat. Environ Toxicol. 2018; 33(2): 198-208.
  16. Umukoro S, Oluwole GO, Olamijowon HE, Omogbiya AI, Eduviere AT. Effect of monosodium glutamate on behavioral phenotypes, biomarkers of oxidative stress in brain tissues and liver enzymes in mice. World J Neurosci. 2015; 5: 339-349.
  17. Duan J, Kasper DL. Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology. 2011; 21(4): 401-409.
  18. Onyema OO, Farombi EO, Emerole GO, Ukoha AI, Onyeze GO. Effect of vitamin E on monosodium glutamate induced hepatotoxic­ity and oxidative stress in rats. Indian J Biochem Biophys. 2006; 43(1): 20-24.
  19. Babu GN, Bawari M, Ali MM. Lipid peroxidation potential and an­tioxidant status of circumventricular organs of rat brain following neonatal monosodium glutamate. Neurotoxicology. 1994; 15(3): 773-777.
  20. Pavlovic V, Cekic S, Sokolovic D, Djindjic B. Modulatory effect of monosodium glutamate on rat thymocyte proliferation and apopto­sis. Bratisl Lek Listy. 2006; 107(5): 185-191.
  21. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000; 529 Pt 1: 57-68.
  22. Zhang Y, Bhavnani BR. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mecha­nisms involving calpain and caspase-3 proteases as well as apop­tosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci. 2006; 7: 49.
  23. Khazali H, Mahmoudi F. Morphine and kisspeptin influences on 5-α reductase and aromatase gene expression in adult male rats. Iran J Basic Med Sci. 2019; 22(12): 1462-1467.
  24. Uenoyama Y, Nakamura S, Hayakawa Y, Ikegami K, Watanabe Y, Deura C, et al. Lack of pulse and surge modes and glutamatergic stimulation of luteinising hormone release in Kiss1 knockout rats. J Neuroendocrinol. 2015; 27(3): 187-197.
  25. Khajehnasiri N, Khazali H, Sheikhzadeh F. Various responses of male pituitary-gonadal axis to different intensities of long-term ex­ercise: Role of expression of KNDYrelated genes. J Biosci. 2018; 43(4): 569-574.
  26. Krajewski SJ, Burke MC, Anderson MJ, McMullen NT, Rance NE. Forebrain projections of arcuate neurokinin B neurons demon­strated by anterograde tract-tracing and monosodium glutamate lesions in the rat. Neuroscience. 2010; 166(2): 680-697.
  27. Azizi V, Oryan S, Khazali H, Hosseini A. Central injection of neuro­peptide Y modulates sexual behavior in male rats: interaction with GnRH and kisspeptin/neurokinin B/dynorphin. Int J Neurosci. 2021; 131(8): 780-788.
  28. Morris MJ, Tortelli CF, Filippis A, Proietto J. Reduced BAT function as a mechanism for obesity in the hypophagic, neuropeptide Y defi­cient monosodium glutamate-treated rat. Regul Pept. 1998; 75-76: 441-447.
  29. Stricker-Krongrad A, Beck B. Up-regulation of neuropeptide Y re­ceptors in the hypothalamus of monosodium glutamate-lesioned Sprague-Dawley rats. Nutr Neurosci. 2004; 7(4): 241-245.
  30. Tirassa P, Lundeberg T, Stenfors C, Bracci-Laudiero L, Theodors­son E, Aloe L. Monosodium glutamate increases NGF and NPY concentrations in rat hypothalamus and pituitary. Neuroreport. 1995; 6(18): 2450-2452.
  31. Bergen HT, Mizuno TM, Taylor J, Mobbs CV. Hyperphagia and weight gain after gold-thioglucose: relation to hypothalamic neuro­peptide Y and proopiomelanocortin. Endocrinology. 1998; 139(11): 4483-4488.
  32. Hill JW, Elias CF, Fukuda M, Williams KW, Berglund ED, Holland WL, et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 2010; 11(4): 286-297.
  33. Skultetyova I, Kiss A, Jezova D. Neurotoxic lesions induced by monosodium glutamate result in increased adenopituitary proopi­omelanocortin gene expression and decreased corticosterone clearance in rats. Neuroendocrinology. 1998; 67(6): 412-420.
  34. Argiolas A, Melis MR, Mauri A, Gessa GL. Oxytocin-induced pe­nile erection and yawning in male rats: effect of neonatal monoso­dium glutamate and hypophysectomy. Psychopharmacology(Berl). 1989; 97(3): 383-387.
  35. Lawrence C, Fraley GS. Galanin-like peptide (GALP) is a hypo­thalamic regulator of energy homeostasis and reproduction. Front Neuroendocrinol. 2011; 32(1): 1-9.
  36. Gabriel SM, MacGarvey UM, Koenig JI, Swartz KJ, Martin JB, Beal MF. Characterization of galanin-like immunoreactivity in the rat brain: effects of neonatal glutamate treatment. Neurosci Lett. 1988; 87(1-2): 114-121.
  37. Meister B, Ceccatelli S, Hokfelt T, Anden NE, Anden M, Theodors­son E. Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions. Exp Brain Res. 1989; 76(2): 343-368.
  38. Lacombe A, Lelievre V, Roselli CE, Muller JM, Waschek JA, Vilain E. Lack of vasoactive intestinal peptide reduces testosterone levels and reproductive aging in mouse testis. J Endocrinol. 2007; 194(1): 153-160.
  39. Bruno JB, Matos MHT, Chaves RN, Figueiredo JR. Involvement of vasoactive intestinal peptide (VIP) of ovarian physiology. Anim Reprod. 2011; 8(3/4): 51-57.
  40. Rojas-Castaneda JC, Vigueras-Villasenor RM, Chavez-Saldana M, Rojas P, Gutierrez-Perez O, Rojas C, et al. Neonatal exposure to monosodium glutamate induces morphological alterations in su­prachiasmatic nucleus of adult rat. Int J Exp Pathol. 2016; 97(1): 18-26.
  41. Yamakawa GR, Weerawardhena H, Eyolfson E, Griep Y, Antle MC, Mychasiuk R. Investigating the role of the hypothalamus in out­comes to repetitive mild traumatic brain injury: neonatal monoso­dium glutamate does not exacerbate deficits. Neuroscience. 2019; 413: 264-278.
  42. Sheffer-Babila S, Sun Y, Israel DD, Liu SM, Neal-Perry G, Chua SC. Agouti-related peptide plays a critical role in leptin's effects on female puberty and reproduction. Am J Physiol Endocrinol Metab. 2013; 305(12): E1512-E1520.
  43. Legradi G, Lechan RM. Agouti-related protein containing nerve ter­minals innervate thyrotropin-releasing hormone neurons in the hy­pothalamic paraventricular nucleus. Endocrinology. 1999; 140(8): 3643-3652.
  44. Broberger C, Johansen J, Johansson C, Schalling M, Hokfelt T. The neuropeptide Y/agouti gene-related protein (AGRP) brain cir­cuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc Natl Acad Sci USA. 1998; 95(25): 15043-15048.
  45. Safari H, Khanlarkhani N, Sobhani A, Najafi A, Amidi F. Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of nor­mozoospermic men. Hum Fertil (Camb). 2018; 21(4): 248-254.
  46. Zhang Q, Liu D, Zhang M, Li N, Lu S, Du Y, et al. Effects of brain-derived neurotrophic factor on oocyte maturation and embryonic development in a rat model of polycystic ovary syndrome. Reprod Fertil Dev. 2016; 28(12): 1904-1915.
  47. Jin YJ, Cao PJ, Bian WH, Li ME, Zhou R, Zhang LY, et al. BDNF levels in adipose tissue and hypothalamus were reduced in mice

 

with MSG-induced obesity. Nutr Neurosci. 2015; 18(8): 376-382.

  1. Tometten M, Blois S, Arck PC. Nerve growth factor in reproductive biology: link between the immune, endocrine and nervous system? Chem Immunol Allergy. 2005; 89: 135-148.
  2. Sanchez-Rodriguez A, Arias-Alvarez M, Rebollar PG, Bautista JM, Lorenzo PL, Garcia-Garcia RM. Gene expression and immunolo­calization of low-affinity neurotrophin receptor (p75) in rabbit male reproductive tract during sexual maturation. Reprod Domest Anim. 2018; 53 Suppl 2: 62-65.
  3. Beaule C, Amir S. Photic regulation of circadian rhythms and the expression of p75 neurotrophin receptor immunoreactivity in the suprachiasmatic nucleus in rats. Brain Res. 2001; 894(2): 301-306.
  4. Ochiogu IS, Ogwu D, Uchendu CN, Okoye CN, Ihedioha JI, Mbe­gbu EC. Effects of monosodium-L-glutamate administration on se­rum levels of reproductive hormones and cholesterol, epididymal sperm reserves and testicular histomorphology of male albino rats. Acta Vet Hung. 2015; 63(1): 125-139.
  5. Fernandes GS, Arena AC, Campos KE, Volpato GT, Anselmo-Franci JA, Damasceno DC, et al. Glutamate-induced obesity leads to decreased sperm reserves and acceleration of transit time in the epididymis of adult male rats. Reprod Biol Endocrinol. 2012; 10: 105.
  6. Franca LR, Suescun MO, Miranda JR, Giovambattista A, Perello M, Spinedi E, et al. Testis structure and function in a nongenetic hyperadipose rat model at prepubertal and adult ages. Endocrinol­ogy. 2006; 147(3): 1556-1563.
  7. Wilkinson M, Wilkinson D, Wiesner G, Morash B, Ur E. Hypotha­lamic resistin immunoreactivity is reduced by obesity in the mouse: co-localization with alpha-melanostimulating hormone. Neuroen­docrinology. 2005; 81(1): 19-30.
  8. Leitner C, Bartness TJ. Food deprivation-induced changes in body fat mobilization after neonatal monosodium glutamate treatment. Am J Physiol Regul Integr Comp Physiol. 2008; 294(3): R775-R783.
  9. Yuan M, Huang G, Li J, Zhang J, Li F, Li K, et al. Hyperleptinemia directly affects testicular maturation at different sexual stages in mice, and suppressor of cytokine signaling 3 is involved in this pro­cess. Reprod Biol Endocrinol. 2014; 12: 15.
  10. Johnston CA, Negro-Vilar A. Neurotoxin effects on oxytocin, vas­opressin and somatostatin in discrete rat brain areas. Peptides. 1986; 7(5): 749-753.
  11. Zia MS, Qamar K, Hanif R, Khalil M. Effect of monosodium gluta­mate on the serum estrogen and progesterone levels in female rat and prevention of this effect with diltiazem. J Ayub Med Coll Abbot­tabad. 2014; 26(1): 18-20.
  12. Sun YM, Hsu HK, Lue SI, Peng MT. Sex-specific impairment in sexual and ingestive behaviors of monosodium glutamate-treated rats. Physiol Behav. 1991; 50(5): 873-880.
  13. Bojanic V, Bojanic Z, Najman S, Savic T, Jakovljevic V, Najman S, et al. Diltiazem prevention of toxic effects of monosodium gluta­mate on ovaries in rats. Gen Physiol Biophys. 2009; 28 Spec No: 149-154.
  14. Waxman DJ, Ram PA, Pampori NA, Shapiro BH. Growth hormone regulation of male-specific rat liver P450s 2A2 and 3A2: induction by intermittent growth hormone pulses in male but not female rats rendered growth hormone deficient by neonatal monosodium glu­tamate. Mol Pharmacol. 1995; 48(5): 790-797.
  15. Giovambattista A, Suescun MO, Nessralla CCDL, Franca LR, Spinedi E, Calandra RS. Modulatory effects of leptin on leydig cell function of normal and hyperleptinemic rats. Neuroendocrinology. 2003; 78(5): 270-279.
  16. Kaledin VI, Il'nitskaia SI, Kuznetsova EG, Amstislavskaia TG. So­dium glutamate on some physiological features and chemically in­duced hepatocarcinogenesis in neontal period in male mice. Ross Fiziol Zh Im I M Sechenova. 2005; 91(5): 574-580.
  17. Kuznetsova EG, Amstislavskaya TG, Bulygina VV, Il'nitskaya SI. Effect of neonatal injection of sodium glutamate and diethylnitro­samine on hepatocarcinogenesis, reproductive and adrenocortical systems of male mice. Bull Exp Biol Med. 2005; 139(6): 711-714.
  18. Iamsaard S, Sukhorum W, Samrid R, Yimdee J, Kanla P, Chaisiwa­mongkol K, et al. The sensitivity of male rat reproductive organs to monosodium glutamate. Acta Med Acad. 2014; 43(1): 3-9.
  19. Sasaki F, Kawai T, Ohta M. Immunohistochemical evidence of neu­rons with GHRH or LHRH in the arcuate nucleus of male mice and their possible role in the postnatal development of adenohypophy­sial cells. Anat Rec. 1994; 240(2): 255-260.
  20. Fernstrom JD, Cameron JL, Fernstrom MH, McConaha C, Weltzin TE, Kaye WH. Short-term neuroendocrine effects of a large oral dose of monosodium glutamate in fasting male subjects. J Clin En­docrinol Metab. 1996; 81(1): 184-191.
  21. Camihort G, Gomez Dumm C, Luna G, Ferese C, Jurado S, Moreno G, et al. Relationship between pituitary and adipose tissue after hy­pothalamic denervation in the female rat. A morphometric immuno­histochemical study. Cells Tissues Organs. 2005; 179(4): 192-201.
  22. Shannon M, Wilson J, Xie Y, Connolly L. In vitro bioassay investiga­tions of suspected obesogen monosodium glutamate at the level of nuclear receptor binding and steroidogenesis. Toxicol Lett. 2019; 301: 11-16.