Effects of The Mitochondrial Genome on Germ Cell Fertility: A Review of The Literature

Document Type : Review Article


1 Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran

2 Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran

3 Health Policy Research Centre, Health Research Institute, Shiraz University of Medical Sciences, Shiraz, Iran

4 Virtual Faculty, Tehran University of Medical Sciences, Tehran, Iran

5 Infertility treatment Center of Beasat Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran

6 Infertility Treatment Center of Besat Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran


Infertility is one of the major problems faced in medicine. There are numerous factors that play a role in infertility. For 
example, numerous studies mention the impact of the quantity and quality of mitochondria in sexual gametes. This is 
a narrative review of the effects of the mitochondrial genome on fertility. We searched the PubMed, Science Direct, SID, Google Scholar, and Scopus databases for articles related to “Fertility, Infertility, Miscarriage, Mitochondria, Sperm, mtDNA, Oocytes” and other synonymous keywords from 2000 to 2020. The mitochondrial genome affects infertility in both male and female gametes; in sperm, it mainly releases free radicals. In the oocyte, a mutation in this genome can affect the amount of energy required after fertilisation, leading to gestation failure. In both cases, infertile cells have substantially less mitochondrial DNA (mtDNA) copies. The effects of mtDNA on gamete fertility occur via changes in oxidative phosphorylation and cellular energy production. Also, a reduction in the number of mtDNA copies is directly associated with sex cell infertility. Therefore, evaluation of the mitochondrial genome can be an excellent diagnostic option for couples who have children with neonatal disorders, infertile couples who seek assisted reproductive treatment, and those in whom assisted reproductive techniques have failed.


1. Gray MW. Origin and evolution of mitochondrial DNA. Annu Rev Cell Biol. 1989; 5(1): 25-50.
2. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006; 16(14): R551-R560.
3. Sebastián D, Zorzano A. Mitochondrial dynamics: a journey from mitochondrial morphology to mitochondrial function and quality. In: Oliveira PJ, editor. Mitochondrial biology and experimental therapeutics. Switzerland: Springer; 2018. 19-31. 
4. Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science. 1999; 283(5407): 1476-1481.
5. Reznichenko A, Huyser C, Pepper MS. Mitochondrial transfer: Implications for assisted reproductive technologies. Appl Transl Genom. 2016; 11: 40-47.
6. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010; 83(1): 52-62.
7. Barchiesi A, Vascotto C. Transcription, processing, and decay of mitochondrial RNA in health and disease. Int J Mol Sci. 2019; 20(9): 2221. 
8. von Heijne G. Why mitochondria need a genome. FEBS Lett. 1986; 198(1): 1-4.
9. Macino G, Scazzocchio C, Waring R, Berks MM, Davies RW. Conservation and rearrangement of mitochondrial structural gene sequences. Nature. 1980; 288(5789): 404-406. 
10. Saccone C, Gissi C, Lanave C, Larizza A, Pesole G, Reyes A. Evolution of the mitochondrial genetic system: an overview. Gene. 2000; 261(1): 153-159. 
11. Arbabian M, Amirzadegan M, Tavalaee M, Nasr-Esfahani M. Oxidative stress and its effects on male infertility: a review article. J Rafsanjan Univ Med Sci. 2018; 17(3): 253-274.
12. Cree L, Loi P. Mitochondrial replacement: from basic research to assisted reproductive technology portfolio tool—technicalities and possible risks. Mol Hum Reprod. 2015; 21(1): 3-10.
13. Mobarak H, Heidarpour M, Tsai P-SJ, Rezabakhsh A, Rahbarghazi R, Nouri M, Mahdipour M. Autologous mitochondrial microinjection; a strategy to improve the oocyte quality and subsequent reproductive outcome during aging. Cell Biosci. 2019; 9: 95.
14. Cardullo RA, Baltz JM. Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil Cytoskeleton. 1991; 19(3): 180-188.
15. Vertika S, Singh KK, Rajender S. Mitochondria, spermatogenesis, and male infertility-an update. Mitochondrion. 2020; 54: 26-40.
16. Gharagozloo P, Gutiérrez-Adán A, Champroux A, Noblanc A, Kocer A, Calle A, et al. A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models. Hum Reprod. 2016; 31(2): 252-262. 
17. Al-azzawie HF, Naeim M, Saleman ED. A novel mtDNA deletions are associated with diminished fertility in Iraqi human sperm. Int J. 2014; 2(6): 139-150.
18. Xian H, Liou YC. Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy. Cell Death Differ. 2021; 28(3): 827-842.
19. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G. Ubiquitin tag for sperm mitochondria. Nature. 1999; 402(6760): 371-372.
20. Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C, et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science. 2011; 334(6059): 1144-1147. 
21. Boucret L, Chao De La Barca J, Morinière C, Desquiret V, FerréL'Hôtellier V, Descamps P, et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. 
Hum Reprod. 2015; 30(7): 1653-1664.
22. Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion. 2005; 5(2): 89-108.
23. Parsons TJ, Muniec DS, Sullivan K, Woodyatt N, Alliston-Greiner R, Wilson MR, et al. A high observed substitution rate in the human mitochondrial DNA control region. Nat Genet. 1997; 15(4): 363-368.
24. Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL. Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem. 2000; 275(48): 37518-37523.
25. Jiang M, Kauppila TES, Motori E, Li X, Atanassov I, Folz-Donahue K, et al. Increased total mtDNA copy number cures male infertility despite unaltered mtDNA mutation load. Cell Metab. 2017; 26(2): 429-436. 
26. Mughal IA, Irfan A, Jahan S, Hameed A. Male infertility is significantly associated with multiple deletions in an 8.7-kb segment of sperm mtDNA in Pakistan. Turk J Med Sci. 2017; 47(3): 928-933.
27. Zhang G, Wang Z, Ling X, Zou P, Yang H, Chen Q, Zhou N, Sun L, Gao J, Zhou Z. Mitochondrial biomarkers reflect semen quality: results from the MARCHS study in Chongqing, China. PLoS One. 2016; 11(12): e0168823.
28. Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic  regulation and developmental competence. Reproduction. 2004; 128(3): 269-280.
29. Dvorak M, Tesarik J. Differentiation of mitochondria in the human preimplantation embryo grown in vitro. Scr Med (Brno). 1985; 58: 161-170.
30. Au HK, Yeh TS, Kao SH, Tzeng CR, Hsieh RH. Abnormal mitochondrial structure in human unfertilized oocytes and arrested embryos. Ann N Y Acad Sci. 2005; 1042(1): 177-185.
31. Barnett DK, Bavister BD. Inhibitory effect of glucose and phosphate on the second cleavage division of hamster embryos: is it linked to metabolism? Hum Reprod Open. 1996; 11(1): 177-183.
32. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Gonçalves PB, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001; 64(3): 904-909.
33. Smith S, Turbill C, Suchentrunk F. Introducing mother’s curse: low male fertility associated with an imported mtDNA haplotype in a captive colony of brown hares. Mol Ecol. 2010; 19(1): 36-43.
34. Chappel S. The role of mitochondria from mature oocyte to viable blastocyst. Obstet Gynecol Int. 2013; 2013: 183024.
35. Reynier P, May-Panloup P, Chretien M, Morgan C, Jean M, Savagner F, et al. Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod. 2001; 7(5): 425-429.
36. Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995; 64(3): 577-583.
37. Zeng HT, Yeung WS, Cheung MP, Ho PC, Lee CK, Zhuang Gl, et al. In vitro–matured rat oocytes have low mitochondrial deoxyribonucleic acid and adenosine triphosphate contents and have abnormal mitochondrial redistribution. Fertil Steril. 2009; 91(3): 900-907.
38. Hauswirth WW, Laipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA. 1982; 79(15): 4686-4690.
39. Marchington D, Macaulay V, Hartshorne G, Barlow D, Poulton J. Evidence from human oocytes for a genetic bottleneck in an mtDNA disease. Am J Hum Genet. 1998; 63(3): 769-775.
40. Poulton J, Brown MS, Cooper A, Marchington D, Phillips D. A common mitochondrial DNA variant is associated with insulin resistance in adult life. Diabetologia. 1998; 41(1): 54-58.
41. Passarella S, Schurr A, Portincasa P. Mitochondrial transport in glycolysis and gluconeogenesis: achievements and perspectives. Int J Mol Sci. 2021; 22(23): 12620.
42. Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998; 145(1-2): 81-88.
43. Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science. 2004 ; 303(5655): 223-226.
44. Ruiz-Pesini E, Lapena A-C, Díez-Sánchez C, Pérez-Martos A, Montoya J, Alvarez E, et al. Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am J Hum Genet. 2000; 67(3): 682-696.
45. Montiel-Sosa F, Ruiz-Pesini E, Enríquez JA, Marcuello A, DíezSánchez C, Montoya J, et al. Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene. 2006; 368: 21-27.
46. Brüggerhoff K, Zakhartchenko V, Wenigerkind H, Reichenbach H-D, Prelle K, Schernthaner W, et al. Bovine somatic cell nuclear transfer using recipient oocytes recovered by ovum pick-up: effect 
of maternal lineage of oocyte donors. Biol Reprod. 2002; 66(2): 367-373.
47. Sutarno S. Sequence variation of bovine mitochondrial ND-5 between haplotypes of composite and Hereford Breeds of beef cattle. Biodiversitas. 2002; 3(2): 213-219.
48. Thouas GA, Trounson AO, Wolvetang EJ, Jones GM. Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol Reprod. 2004; 71(6): 1936-1942.
49. Thouas GA, Trounson AO, Jones GM. Developmental effects of sublethal mitochondrial injury in mouse oocytes. Biol Reprod. 2006; 74(5): 969-977.
50. Skulachev V. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis. 2006; 11(4): 473-485.
51. Perez J, Tardito D, Mori S, Racagni G, Smeraldi E, Zanardi R. Altered Rap1 endogenous phosphorylation and levels in platelets from patients with bipolar disorder. J Psychiatr Res. 2000; 34(2): 99-104.
52. Herbert M, Turnbull D. Progress in mitochondrial replacement therapies. Nat Rev J Mol Cell Biol. 2018; 19(2): 71-72.
53. Pagnamenta AT, Taanman JW, Wilson CJ, Anderson NE, Marotta R, Duncan AJ, et al. Dominant inheritance of premature ovarian failure associated with mutant mitochondrial DNA polymerase gamma. Hum Reprod. 2006; 21(10): 2467-2473.
54. Luoma P, Melberg A, Rinne JO, Kaukonen JA, Nupponen NN, Chalmers RM, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study. J Lancet. 2004; 364(9437): 875-882.
55. Hsieh RH, Au HK, Yeh TS, Chang SJ, Cheng YF, Tzeng CR. Decreased expression of mitochondrial genes in human unfertilized oocytes and arrested embryos. Fertil Steril. 2004; 81: 912-918.
56. Ghaffari Novin M, Noruzinia M, Allahveisi A, Saremi A, Fadaei Fathabadi F, Mastery Farahani R, et al. Comparison of mitochondrial-related transcriptional levels of TFAM, NRF1 and MT-CO1 genes in single human oocytes at various stages of the oocyte maturation. Iran Biomed J. 2015; 19(1): 23-28.
57. Novin MG, Allahveisi A, Noruzinia M, Farhadifar F, Yousefian E, Fard AD, et al. The relationship between transcript expression levels of nuclear encoded (TFAM, NRF1) and mitochondrial encoded (MT-CO1) genes in single human oocytes during oocyte maturation. Balkan J Med Genet. 2015; 18(1): 39-46.
58. Van Blerkom J, Davis PW, Lee J. Fertilization and early embryolgoy: ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum 
Reprod. 1995; 10(2): 415-424.
59. Chavoshi Nezhad N, Vahabzadeh Z, Allahveisie A, Rahmani K, Raoofi A, Rezaie MJ, et al. The efect of L-carnitine and coenzyme Q10 on the sperm motility, DNA fragmentation, chromatin structure and oxygen free radicals during, before and after freezing in oli gospermia men. Urol J. 2021; 18(3): 330-336.