Comparison between SPATA18 and P53 Gene Expressions in The Sperm Cells Obtained from Normospermic and Asthenospermic Samples: A Case-Control Study

Document Type : Original Article

Authors

Department of the Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran

Abstract

Background: Improving sperm motility results in increasing the success of a treatment cycle. Recently, sperm RNA has 
been used for diagnostic purposes such as whole seminal fluid, sperm analysis, and sperm quality test in patients undergoing in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI). SPATA18-P53 pathway is considered an essential pathway related to sperm mitochondria, which controls mitochondrial quality by eliminating its oxidative proteins. Oxidative stress may decrease sperm motility and affect sperm quality negatively due to an increase in P53 expression. SPATA18 protein is found in satellite fibers related to outer dense fibers in the middle piece of sperm. The downregulation of SPATA18 in the asthenospermia group can represent this gene’s critical function in sperm motility and fertility. The present study aimed to assess the relationship between SPATA18 and P53 gene expression in sperm cells obtained from normospermia and asthenospermia.
Materials and Methods: In this case-control study, the quantitative real-time polymerase chain reaction (RT-PCR) 
technique was used to measure the SPATA18 and P53 gene expression level in sperm samples collected from 21 patients and 63 healthy individuals. Further, the sperm DNA fragmentation assay (SDFA) kit was applied to determine the relative apoptosis level in cells and evaluate the biochemical information related to the patients’ sperm samples. Furthermore, all the participants completed the consent form, and the ethics committee confirmed the study.
Results: Based on the results, the P53 and SPATA18 gene expression levels in most of the samples, in which motility 
was less than 40%, increased and decreased (P≤0.001), respectively.
Conclusion: The SPATA18 and P53 gene expression levels increased and decreased in the asthenospermic patients, 
respectively, compared to the control group. Thus, the P53 and SPATA18 expression levels can be used as an appropriate marker for diagnosing sperm motility in male.

Keywords


1. Georgiadis AP, Kishore A, Zorrilla M, Jaffe TM, Sanfilippo JS, Volk E, et al. High quality RNA in semen and sperm: isolation, analysis and potential application in clinical testing. J Urol. 2015; 193(1): 352-359. 
2. World Health Organization. WHO Laboratory manual for the examination and processing of human semen. 5th ed. 2010. Available from: https://apps.who.int/iris/handle/10665/44261 (10 May 2010).
3. Araoye MO. Epidemiology of infertility: social problems of the infertile couples. West Afr J Med. 2003; 22(2): 190-196.
4. Bablok L, Dziadecki W, Szymusik I, Wolczynski S, Kurzawa R, Pawelczyk L, et al. Patterns of infertility in Poland - multicenter study. Neuro Endocrinol Lett. 2011; 32(6): 799-804.
5. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci. 2015; 8(4): 191.
6. Inhorn MC. Middle Eastern masculinities in the age of new reproductive technologies: male infertility and stigma in Egypt and Lebanon. Med Anthropol Q. 2004; 18(2): 162-182.
7. Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G, et al. European association of urology guidelines on male infertility: the 2012 update. Eur Urol. 2012; 62(2): 324-332.
8. Ortega C, Verheyen G, Raick D, Camus M, Devroey P, Tournaye H. Absolute asthenozoospermia and ICSI: what are the options? Hum Reprod Update. 2011; 17(5): 684-692.
9. Sanocka D, Kurpisz M. Infertility in Poland--present status, reasons and prognosis as a reflection of central and eastern Europe problems with reproduction. Med Sci Monit. 2003; 9(3): SR16-SR20.
10. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018; 15(6): 369-384.
11. Brugh VM 3rd, Lipshultz LI. Male factor infertility: evaluation and management. Med Clin North Am. 2004; 88(2): 367-385.
12. Hirsh A. Male subfertility. BMJ. 2003; 327(7416): 669-672.
13. Brugh VM 3rd, Matschke HM, Lipshultz LI. Male factor infertility. Endocrinol Metab Clin North Am. 2003; 32(3): 689-707.
14. Kitamura N, Nakamura Y, Miyamoto Y, Miyamoto T, Kabu K, Yoshida M, et al. Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria. PLoS One. 2011; 6(1): 
e16060.
15. Miyamoto Y, Kitamura N, Nakamura Y, Futamura M, Miyamoto T, Yoshida M, et al. Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control. PLoS One. 
2011; 6(1): e16054.
16. Dan X, Babbar M, Moore A, Wechter N, Tian J, Mohanty JG, et al. DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic Acids Res. 2020; 48(12): 6611-6623.
17. Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol. 2014; 2: 936-944.
18. Roberts RF, Tang MY, Fon EA, Durcan TM. Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. Int J Biochem Cell Biol. 2016; 79: 427-436.
19. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013; 20(1): 31-42.
20. Martinez-Vicente M. Neuronal mitophagy in neurodegenerative diseases. Front Mol Neurosci. 2017; 10: 64.
21. Okuyama K, Kitajima Y, Egawa N, Kitagawa H, Ito K, Aishima S, et al. Mieap-induced accumulation of lysosomes within mitochondria (MALM) regulates gastric cancer cell invasion under hypoxia by suppressing reactive oxygen species accumulation. Sci Rep. 2019; 9(1): 2822.
22. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017; 387: 95-105. 
23. Georgieva E, Ivanova D, Zhelev Z, Bakalova R, Gulubova M, Aoki I. Mitochondrial dysfunction and redox imbalance as a diagnostic marker of "free radical diseases". Anticancer Res. 2017; 37(10): 5373-5381.
24. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl. 2002; 23(6): 737-752.
25. Xu Y, Phoon CK, Berno B, D'Souza K, Hoedt E, Zhang G, et al. Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol. 2016; 12(8): 641-647. 
26. Lu YW, Claypool SM. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet. 2015; 6: 3.
27. Ren M, Xu Y, Erdjument-Bromage H, Donelian A, Phoon CKL, Terada N, et al. Extramitochondrial cardiolipin suggests a novel function of mitochondria in spermatogenesis. J Cell Biol. 2019; 218(5): 1491-1502. 
28. Cohen-Bacrie P, Belloc S, Ménézo YJ, Clement P, Hamidi J, Benkhalifa M. Correlation between DNA damage and sperm parameters: a prospective study of 1,633 patients. Fertil Steril. 2009; 91(5): 1801-1805.
29. Kaneko T, Murayama E, Kurio H, Yamaguchi A, Iida H. Characterization of Spetex-1, a new component of satellite fibrils associated with outer dense fibers in the middle piece of rodent sperm flagella. Mol Reprod Dev. 2010; 77(4): 363-372. 
30. Bornstein C, Brosh R, Molchadsky A, Madar S, Kogan-Sakin I, Goldstein I, et al. SPATA18, a spermatogenesis-associated gene, is a novel transcriptional target of p53 and p63. Mol Cell Biol. 2011; 31(8): 1679-1689.
31. Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014; 81(1): 5-17. e1-3. 
32. Ross C, Morriss A, Khairy M, Khalaf Y, Braude P, Coomarasamy A, et al. A systematic review of the effect of oral antioxidants on male infertility. Reprod Biomed Online. 2010; 20(6): 711-723.
33. Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000; 73(1): 43-50.
34. Zalzali H, Rabeh W, Najjar O, Abi Ammar R, Harajly M, Saab R. Interplay between p53 and Ink4c in spermatogenesis and fertility. Cell Cycle. 2018; 17(5): 643-651.
35. Nakamura Y, Arakawa H. Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53. Cancer Sci. 2017; 108(5): 809-817.
36. Moradi MN, Karimi J, Khodadadi I, Amiri I, Karami M, Saidijam M, et al. Evaluation of the p53 and thioredoxin reductase in sperm from asthenozoospermic males in comparison to normozoospermic males. Free Radic Biol Med. 2018; 116: 123-128.
37. Ghandehari-Alavijeh R, Zohrabi D, Tavalaee M, Nasr-Esfahani MH. Association between expression of TNF-α, P53 and HIF1α with asthenozoospermia. Hum Fertil (Camb). 2019; 22(2): 145-151.
38. Nakamura Y, Kitamura N, Shinogi D, Yoshida M, Goda O, Murai R, et al. BNIP3 and NIX mediate Mieap-induced accumulation of lysosomal proteins within mitochondria. PLoS One. 2012; 7(1): e30767. 
39. Belloc S, Benkhalifa M, Cohen-Bacrie M, Dalleac A, Chahine H, Amar E, et al. Which isolated sperm abnormality is most related to sperm DNA damage in men presenting for infertility evaluation. J Assist Reprod Genet. 2014; 31(5): 527-532.
40. Iida H, Honda Y, Matsuyama T, Shibata Y, Inai T. Spetex-1: a new component in the middle piece of flagellum in rodent spermatozoa. Mol Reprod Dev. 2006; 73(3): 342-349.